Andrew Bent

sidebar_fold Created with Sketch.

Professor

Phone: 608-265-3034
E-mail: afbent@wisc.edu

886 Russell Laboratories
1630 Linden Dr
Madison, WI 53706

sidebar_fold Created with Sketch.

Learn More:

 

+Education
  • B.A. Oberlin College
  • Ph.D. Massachusets Institute of Technology

Awards

  • AAAS Fellow
  • APS Fellow (American Phytopathological Society)
  • APS Noel Keen Award (for sustained research excellence in molecular plant pathology)
+Research

Our work examines the genetic and molecular basis of plant disease resistance. Plant immune systems include many elements that are unique to plants. We study this in part because host-pathogen dynamics and the molecular workings of immune systems are fascinating biological topics. On a more practical level, genetically determined disease resistance is preferred because it is convenient for growers and minimizes the need for costly, time-consuming and/or potentially toxic external treatments.

Plant breeders and their predecessors have selected for improved plant disease resistance since the dawn of agriculture, but the molecular basis of this resistance is only partly understood. We work to identify and study the genes and the biochemical/cellular processes that control pathogen recognition, defense signal transduction, and the execution of successful resistance responses. Recently we have focused on genetic loci of demonstrated agricultural utility as our starting point. Discoveries of the causal genes and cellular mechanisms of resistance are facilitating more precise marker-assisted plant breeding, efficient screening of germplasm for novel haplotypes using whole-genome sequence data, gene editing to improve resistance, discovery of other loci that mediate similar types of resistance, and development of specific biotech (GM) approaches that improve disease resistance.

Our research previously focused on Arabidopsis thaliana because of the extraordinary experimental versatility of this plant species, and similarly studied the genetically tractable bacterial blight pathogen Pseudomonas syringae pv tomato (see Previous Work below).

Our work is now focused on soybean, the most abundant legume crop and a major contributor to world food supplies. We are discovering mechanisms of resistance to the most yield-damaging pathogen of soybean, soybean cyst nematode (SCN, Heterodera glycines).  See also: Publications section of this profile.

We are uncovering the molecular mechanisms that underpin the function and evolution of soybean Rhg1, a complex genetic locus that is heavily utilized by farmers to control SCN disease.  We found that three distinct gene products encoded at Rhg1 contribute to SCN resistance.  We also found that a striking form of copy number variation is present at Rhg1 (up to ten tandem repeats of a 31.2kb genome segment encoding those three distinct gene products).  We are studying the multiple mechanisms of Rhg1-mediated resistance, and ways to beneficially manipulate this resistance.  We have also discovered, and continue to study, other genes and processes that contribute to SCN resistance.

Previous Work (see also Publications section of this profile):

Poly(ADP-ribosyl)ation, DNA damage and plant-pathogen interactions.

We discovered that poly(ADP-ribosyl)ation plays significant roles in plant responses to infection and that the plant-microbe interaction processes where poly(ADP-ribosyl)ation is relevant include plant genome stability.  We then discovered that microbial pathogens can activate damage of plant host DNA early in the infection process, which raises questions about how this damage arises and how plant immune responses mediate protection/preservation of genetic information.

Leucine-rich repeat (LRR) protein structure/function/evolution, and plant detection of bacterial flagellin.

We developed ways to identify and manipulate LRR active sites within plant disease resistance proteins and other LRR proteins, how ligand specificity is determined, and how it can be efficiently altered in a targeted way by in vitro evolution. The flagellin receptor FLS2 of Arabidopsis was our primary model. We also examined other aspects of PRR receptor activation, and the ways in which some bacterial pathogens evolved to escape plant detection of their flagellins.

Cyclic nucleotide-gated ion channels in host defense

We discovered that Arabidopsis CNGC2 and CNGC4 impact plant disease resistance and the hypersensitive response. “Defense, no death” mutants dnd1 and dnd2 were used to discover new aspects of plant immune function.

Floral-dip plant transformation methods

Efforts included streamlining methods for genetic transformation of Arabidopsis, attempts to do the same in soybean, and discovery of mechanisms of this unusually efficient method for germline plant transformation without tissue culture (Agrobacterium transforms female gametophytes/early embryos within ovules).

+Courses Taught
  • PL Path/Botany 123 Plants, Parasites, And People
  • PL Path/Entom/Botany 505 Plant-Microbe Interactions: Molecular and Ecological Aspects
  • PL Path 517 Plant Disease Resistance
+Publications

Haarith, D., Das, S., Nelson, E., Zapotocny, R., Bent, A.F. Overexpression of α-SNAPRhg1 Can Improve rhg1-a Mediated Soybean Resistance to Soybean Cyst Nematode. Phytopathology (2025). https://doi.org/10.1094/PHYTO-02-25-0077-R

He, L., Liu, Q., Huang, J., Cai, Y., Chen, L., Wang, Y., Wang, D., Wang, C., Bent, A., Han, S., The AP2/ERF transcription factor GmTINY mediates ethylene regulation of Rhg1 resistance against soybean cyst nematode, PLANT COMMUNICATIONS (2025), doi: https://doi.org/10.1016/j.xplc.2025.101378

Usovsky, M., Bilyeu, K., Bent, A, Scaboo, A. Allele-tagged TaqMan® PCR genotyping assays for high-throughput detection of soybean cyst nematode resistance. Mol Biol Rep 52, 33 (2025). https://doi.org/10.1007/s11033-024-10114-6

Roeder AHK, Bent A, Lovell JT, McKay JK, Bravo A, Medina-Jimenez K, Morimoto KW, Brady SM, Hua L, Hibberd JM, Zhong S, Cardinale F, Visentin I, Lovisolo C, Hannah MA, Webb AAR. Lost in translation: What we have learned from attributes that do not translate from Arabidopsis to other plants. Plant Cell. 2025 May 9;37(5):koaf036. https://doi.org/10.1093/plcell/koaf036

Ozer, S., Bent, A.F., Monteverde, E.D., Schultz, S.J., Diers, B.W. A genetic balancing act: Exploring segregation distortion of SCN resistance in soybean [Glycine max (L.) Merr.]. Crop Science (2025). https://doi.org/10.1002/csc2.70040

Du, Y., Jung, S., Maeda, H., Bent, A.F., 2025. Soybean Cyst Nematode-Resistant Protein AATRhg1 Affects Amino Acid Homeostasis and Betalain Accumulation. Plant Direct. 2025 Aug 26;9(8):e70098. https://doi.org/10.1002/pld3.70098

Han, S., Smith, J.M., Du, Y. and Bent, A.F., 2023. Soybean transporter AATRhg1 abundance increases along nematode migration path and impacts vesiculation and ROS. Plant Physiol. doi: 10.1093/plphys/kiad098. Epub ahead of print.

Siddique, S. et al. (Shahid Siddique, Zoran S. Radakovic, Clarissa Hiltl, Clement Pellegrin, Thomas J. Baum , Helen Beasley, Andrew F. Bent, Oliver Chitambo, Divykriti Chopra, Etienne G. J. Danchin, Eric Grenier , Samer S. Habash, M. Shamim Hasan, Johannes Helder, Tarek Hewezi , Julia Holbein , MartijnHolterman, Sławomir Janakowski, Georgios D. Koutsovoulos, Olaf P. Kranse, Jose L. Lozano-Torres, Tom R.Maier, Rick E. Masonbrink, Badou Mendy, Esther Riemer, Mirosław Sobczak, Unnati Sonawala, Mark G. Sterken, Peter Thorpe, Joris J. M. van Steenbrugge, Nageena Zahid, Florian Grundler & Sebastian Eves-van den Akker), 2022.  The genome and lifestage-specific transcriptomes of a plant-parasitic nematode and its host reveal susceptibility genes involved in trans-kingdom synthesis of vitamin B5. Nat. Commun. 13:6190. https://doi.org/10.1038/s41467-022-33769-w

Bent A., 2022.  Exploring Soybean Resistance to Soybean Cyst Nematode.  Annu Rev Phytopathol.  https://doi.org/10.1146/annurev-phyto-020620-120823  Complimentary Access

Grunwald, D.G., Zapotocny, R.W., Ozer, S., Diers, B.W. and Bent, A.F., 2021.  Detection of rare nematode resistance Rhg1 haplotypes in Glycine soja and a novel Rhg1 a-SNAP. Plant Genome e20152.  https://doi.org/10.1002/tpg2.20152

Butler, K.J., Fliege, C., Zapotocny, R., Diers, B., Hudson, M. and Bent, A.F., 2021. Soybean cyst nematode resistance QTL cqSCN-006 alters the expression of a ɣ-SNAP protein. Mol. Plant-Microbe Interact. https://doi.org/10.1094/MPMI-07-21-0163-R

Yao D., Arguez M.A., He P., Bent A.F., and Song J., 2021. Coordinated regulation of plant immunity by poly(ADPribosyl)ation and K63-linked ubiquitination. Mol. Plant. 14:2088–2103.  https://doi.org/10.1016/j.molp.2021.08.013

Bayless, A.M., Zapotocny, R.W., Han, S., Grunwald, D.J., Amundson, K.K., Bent, A.F., 2019. The rhg1-a (Rhg1 low-copy) nematode resistance source harbors a copia-family retrotransposon within the Rhg1-encoded α-SNAP gene. Plant Direct 3:1-19.  https://doi.org/10.1002/pld3.164.

Butler, K.J., Chen, S., Smith, J.M., Wang, X. and Bent, A.F., 2019. Soybean resistance locus Rhg1 confers resistance to multiple cyst nematodes in diverse plant species. Phytopathology, https://doi.org/10.1094/PHYTO-07-19-0225-R

Hu, D., Bent, A.F., Hou, X. and Li, Y., 2019. Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa. BMC Plant Biology 19:246. https://doi.org/10.1186/s12870-019-1843-6

Keppler, B.D., Song, J., Nyman, J., Voigt, C.A., and Bent, A.F., 2018. 3-aminobenzamide blocks MAMP-induced callose deposition independently of its poly(ADPribosyl)ation inhibiting activity. Front. Plant Sci. 9:1907. https://doi.org/10.3389/fpls.2018.01907

Bayless, A.M., Zapotocny, R.W., Grunwald, D.J., Amundson, K.K., Diers, B.W. and Bent, A.F., 2018. An atypical N-ethylmaleimide sensitive factor enables the viability of nematode-resistant Rhg1 soybeans. Proc. Natl. Acad. Sci. (USA) doi:10.1073/pnas.1717070115.  PDF

Briggs A.G., Adams-Phillips L.C., Keppler B.D., Zebell S.G., Arend K.C., Apfelbaum A.A., Smith J.A., and Bent A.F., 2017. A transcriptomics approach uncovers novel roles for poly(ADP-ribosyl)ation in the basal defense response in Arabidopsis thaliana. PLoS ONE 12(12): e0190268. https://doi.org/10.1371/journal.pone.0190268

Bent, A.F. 2017.  Plant Diseases and Strategies for their Control.  Chapter 13 in: Plants, Genes, and Agriculture: Sustainability through Biotechnology, 1st Edition.  M.J. Chrispeels and P. Gepts, Eds.  Sinauer Associates/Oxford University Press. 650 pp. ISBN-13: 978-1605356846

Michelmore, R., et al., 2017. Foundational and Translational Research Opportunities to Improve Plant Health. Mol. Plant-Microbe Interact. 30:515.  PDF

Bayless, A.M., J.M. Smith, J. Song, P.H. McMinn, A. Teillet, B.K. August and A.F. Bent, 2016. Disease resistance through impairment of α-SNAP/NSF interaction and vesicular trafficking by soybean Rhg1. PNAS. doi: 10.1073/pnas.1610150113  PDF

Helft, L., M. Thompson and A.F. Bent, 2016. Directed evolution of FLS2 towards novel flagellin peptide recognition.  PLoS ONE 11(6): e0157155. doi:10.1371/journal.pone.0157155  http://dx.doi.org/10.1371/journal.pone.0157155

Bent, A., 2016. Resistance from Relatives (News and Views).  Nature Biotechnology 34:620-621. doi:10.1038/nbt.3591 PDF

Song, J., B.D. Keppler, R.R. Wise and A.F. Bent, 2015.  PARP2 Is the predominant poly(ADP-ribose) polymerase in Arabidopsis DNA damage and immune responses. PLoS Genet 11(5): e1005200. doi:10.1371/journal.pgen.1005200  PDF

Wang S., Sun Z., Wang H., Liu L., Lu F., Yang J., Zhang M., Zhang S., Guo Z., Bent A.F., Sun W., 2015.  Rice OsFLS2-mediated perception of bacterial flagellins Is evaded by Xanthomonas oryzae pvs. oryzae and oryzicola.  Mol. Plant pii: S1674-2052(15)00099-4. doi: 10.1016/j.molp.2015.01.012.  PDF

Koller, T. and A.F. Bent, 2014.  FLS2-BAK1 extracellular domain interaction sites required for defense signaling activation. PLoS ONE http://dx.plos.org/10.1371/journal.pone.0111185  PDF  Supplemental Materials

Song, J. and A.F. Bent, 2014.  Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses.  PLoS Pathogens 10(4):e1004030. doi: 10.1371/journal.ppat.1004030. PDF

Cook, D.E., A.M. Bayless, K. Wang, X. Guo, Q. Song, J. Jiang and A.F. Bent, 2014.  Distinct copy number, coding sequence and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode. Plant Physiology 165:630-647.   DOI:10.1104/pp.114.235952. PDF

Cao, Y., D.J. Aceti, G. Sabat, J. Song, S. Makino, B.G. Fox and A.F. Bent, 2013.  Mutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity.  PLoS Pathogens 9(4): e1003313. doi:10.1371/journal.ppat.1003313.   PDF

Cook*, D.E., Lee*, T.G., Guo*, X., Melito, S., Wang, K., Bayless, A., Wang, J., Hughes, T.J., Willis, D.K., Clemente, T., Diers, B.W., Hudson, M.E. and Bent, A.F. (*, co-first authors), 2012.  Copy Number Variation of Multiple Genes at Rhg1 Mediates Nematode Resistance in Soybean.  Science 338:1206-1209.  DOI: 10.1126/science.1228746.  PDF

Sun*, W., Y. Cao*, K.L. Jansen, P. Bittel, T. Boller and A.F. Bent (*co-first authors), 2012. Probing the Arabidopsis flagellin receptor: FLS2-FLS2 association and the contributions of specific domains to signaling function.  Plant Cell 24:1096-1113.   DOI 10.1105/tpc.112.095919.  PDF

Sun, W., L. Liu and A.F. Bent, 2011.   Type III secretion–dependent host defense elicitation and Type III secretion–independent growth within leaves by Xanthomonas campestris pv.campestris.  Mol. Plant Pathol12:731-745.   DOI: 10.1111/J.1364-3703.2011.00707.X  PDF

Helft, L., V. Reddy, X. Chen, T. Koller, L. Federici, J. Fernandez-Recio, R. Gupta and A. Bent, 2011. LRR Conservation Mapping to predict functional sites within protein leucine-rich repeat domains. PLoS ONE 6(7): e21614doi:10.1371/journal.pone.0021614 PDF Supplemental Figures  PDF

Briggs, A.G. and A.F. Bent, 2011. Poly(ADP-ribosyl)ation in plants. Trends Plant Sci. 16:372-372-380. PDF

Danna, C.H., Y.A. Millet, T. Koller, S.-W. Han, A.F. Bent, P.C. Ronald and F.M. Ausubel, 2011. The Arabidopsis flagellin receptor FLS2 mediates the perception of Xanthomonas Ax21 secreted peptides. ProcNatlAcadSci. (USA) 108:9286-9291. PDF Supplemental Files

Nam, M., S. Koh, S.U. Kim, L.L. Domier, J.H. Jeon, H.G. Kim, S.H. Lee, A.F. Bent and J.S. Moon, 2011.  Arabidopsis TTR1 causes LRR-dependent lethal systemic necrosis, rather than systemic acquired resistance, to Tobacco ringspot virus.  Mol Cells 32:421-429.  DOI:10.1007/s10059-011-0101-z  PDF

Bent, A.F. 2011. Pathogens drop the hint: Don’t forget about phytoalexins. Cell Host & Microbe 9:169-170.

Melito, S., A.L. Heuberger, D. Cook, B.W. Diers, A.E. MacGuidwin and A.F. Bent, 2010. A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance. BMC Plant Biology 10:104.   PDF  PubMed

Kim, M., D.L. Hyten, A.F. Bent and B.W. Diers, 2010. Fine mapping of the SCN resistance locus rhg1-b from PI 88788. Plant Genome 3:81-89.  PDF

Adams-Phillips, L., A.G. Briggs and A.F. Bent, 2010.  Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis thaliana to biotic stress.  Plant Physiol. 152:267-280.  PDF  PubMed

Allen, C., A. Bent and A. Charkowski, 2009. Underexplored niches in research on plant pathogenic bacteria. Plant Physiol. 150:1631-1637.  PDF

Adams-Phillips. L., J. Wan, X. Tan, F.M. Dunning, B.C. Meyers, R.W. Michelmore and A.F. Bent, 2008. Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four different Arabidopsis-Pseudomonas R/avr interactions.  Mol. Plant-Microbe Interact. 21:646-657.  PDF  PubMed

Genger, R.K., G.I. Jurkowski, J.M. McDowell, H. Lu, H.W. Jung, J.T. Greenberg and A.F. Bent, 2008. Signaling pathways that regulate the enhanced disease resistance of Arabidopsis “defense, no death” mutants. Mol. Plant-Microbe Interact. 21:1285-1296.  PDF  PubMed

Dunning, F.M., W. Sun, K.L. Jansen, L. Helft and A.F. Bent, 2007. Identification and mutational analysis of Arabidopsis FLS2 Leucine-Rich Repeat domain residues that contribute to flagellin perception. Plant Cell. 19:3297-3313. PDF PubMed

Bent, A. and D. Mackey, 2007. Elicitors, Effectors and R Genes: The new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45:399-436. PDF PubMed

Tan, X., B.C Meyers, A. Kozik, M.A.L. West, M. Morgante, D.A. St. Clair, A.F. Bent and R.W. Michelmore, 2007. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biology 7:5.

Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, Krysan PJ, 2006. MEKK1 Is Required for flg22-induced MPK4 Activation in Arabidopsis Plants. Plant Physiol. 143:661-669. PDF PubMed

Sun, W., F.M. Dunning, C. Pfund, R. Weingarten and A.F. Bent, 2006. Within-species flagellin polymorphism in Xanthomonas campestris pvcampestris and its impact on elicitation of Arabidopsis FLS2-dependent defenses. Plant Cell 18:764-779. PDF PubMed

Bent, A.F., T.K. Hoffman, J.S. Schmidt, G.L. Hartman, D.D. Hoffman, X. Ping, M.L. Tucker, 2006. Disease- and Performance-Related Traits of Ethylene-Insensitive Soybean. Crop Science 43:893-901. PDF

Bent, A.F., 2006.Arabidopsis thaliana Floral Dip Transformation Method. In: Agrobacterium Protocols – 2 nd Edition (K. Wang, Ed.). Methods in Molecular Biology Book Series, Humana Press, Totowa, NJ. Methods in Molecular Biology 343:87-103. PubMed

Quirino, B.F., R. Genger, J.H. Ham, G. Zabala and A.F. Bent, 2004. Identification and functional analysis of Arabidopsis proteins that interact with resistance gene product RPS2 in yeast. PhysiolMolec. Plant Pathol. 65:257-267. PDF Abstract

Jurkowski, G. I., R.K. Smith, I.-c. Yu, J.H. Ham, S.B. Sharma, D.F. Klessig, K.A. Fengler and A.F. Bent, 2004. ArabidopsisDND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol. Plant-Microbe Interact. 17:511-520. PDF PubMed

Pfund, C., J. Tans-Kersten, J., F.M. Dunning, J.M. Alonso, J.R. Ecker, C. Allen and A.F. Bent, 2004. Flagellin is not a major defense elicitor inRalstonia solanacearum cells or extracts applied toArabidopsis thaliana. Mol. Plant-Microbe Interact. 17:696-706. PDF PubMed

Chan, C., R. K. Smith, A. F. Bent and M. Sussman, 2003 A cyclic nucleotide-gated ion channel,CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiology 132:728-731. PDF PubMed

Quirino, B. F. and A. F. Bent (2003) Deciphering host resistance and pathogen virulence: The Arabidopsis/Pseudomonas interaction as a model. Mol. Plant Pathol. 4:517-530. PDF Abstract

Wan, J., F.M. Dunning and A. F. Bent, 2002. Probing plant-pathogen interactions and downstream defense signaling using DNA microarraysFunct. & IntegrGenomics 2: 259-273. PDF PubMed

Bent, A. F., 2002. “Crop Diseases and Strategies for their Control.” Chapter 15 In: Plants, Genes and Agriculture, 2nd Ed. M. Chrispeels and D. SadavaEds., Jones and Bartelett, Inc., Sudbury, MA, pp. 390-413.

Bent. A. F., 2002. “Reconnecting Farms and Ecosystems, If It Pays.” Review of the book:The Farm as Natural Habitat: Reconnecting Farm Systems with Ecosystems (D. L. Jackson and L. L. Jackson, eds., Island Press, Washington D.C., 2002). Science 298:1340-1341. PDF

Bent, A. F., 2001. Plant mitogen-activated protein kinase cascades: Negative regulatory roles turn out positive (Commentary). ProcNatlAcadSci. (USA) 98:784-786. PDF PubMed

M.S. Bachman, J.P. Tamulonis, C.D. Nickell, and A.F. Bent. 2001. Molecular markers linked to brown stem rot resistance genes, Rbs1 and Rbs2, in soybean. Crop Sci. 41:527-535. PDF

Banerjee, D., Z. Zhang, and A.F. Bent (2001). The LRR domain can determine effective interaction between RPS2 and other host factors in Arabidopsis RPS2-mediated disease resistance. Genetics 158:439-450. PDF PubMed

Bent, A. F., 2000.  Arabidopsisin planta transformation: Uses, mechanisms, and prospects for transformation of other species [invited Update for special issue on Arabidopsis].  Plant Physiol. 124:1540-1547. PubMed

Clough, S. J., K. A. Fengler, B. Lippok, R. K. Smith Jr., I.-c. Yu, and A. F. Bent, 2000. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. ProcNatlAcadSci (USA) 97:9323-9328. PubMed

Desfeux, C., S. J Clough and A. F. Bent, 2000. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123:895-904 PubMed

Yu, I.-c., K. A. Fengler, S. J. Clough and A. F. Bent, 2000. Identification of Arabidopsis mutants exhibiting an altered hypersensitive response in gene-for-gene disease resistance. Mol. Plant-Microbe Interact. 13:277-286. PubMed

Hoffman, T., J. S. Schmidt, X. Zhang and A. F. Bent, 1999. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiology 119:935-950. PubMed

Schmidt, J. S., J. E. Harper, T. K. Hoffman, and A. F. Bent, 1999. Regulation of soybean nodulation independent of ethylene signaling. Plant Physiology 119:951-960. PubMed

Yu, I.-c., J. Parker and A. F. Bent, 1998. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. ProcNatlAcadSci. USA 95:7819-7824. PubMed

Clough, S. J. and A. F. Bent, 1998. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743. PubMed

Lee, J.-M., G. L. Hartman, L. L. Domier, and A. F. Bent, 1996. Identification and map location of TTR1, a single locus in Arabidopsis thaliana that confers tolerance to tobacco ringspot nepovirusMol. Plant-Microbe Interact. 9:729-735. PubMed

Bent, A. F., B. N. Kunkel, D. Dahlbeck, K. L. Brown, R. Schmidt, J. Giraudat, J. Leung, and B. J. Staskawicz, 1994. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 265:1856-1860. PubMed

Bent, A. F., and I.-c. Yu, 1999. Applications of Molecular Biology to Plant Disease and Insect Resistance. Advances in Agronomy 66:251-298.

Bent, A. F., 1996. Plant disease resistance genes: Function meets structure. Plant Cell 8:1757-1771. PDF