Faculty

Allen, Caitilyn - Current Faculty Profile
Caitilyn Allen
Professor
(608) 262-9578

 

885D Russell Labs
1630 Linden Dr.
Madison, WI 53706

Faculty Profile Tab

Ph.D.: Virginia Polytechnic Institute and State University in Plant Pathology

Tomato Wilt Image

Overview: Our group focuses on the interactions between the plant pathogenic bacterium Ralstonia solanacearum and its many plant hosts. R. solanacearum causes bacterial wilt, a soilborne disease found in tropical and warm temperate regions all over the world. Because of its very broad host range and wide geographical distribution, it is arguably the world's single most harmful bacterial plant pathogen. This fascinating and destructive bacterium presents many intriguing questions. How can R. solanacearum infect so many different host plants? What traits allow it to live at high cell densities in some plants without causing symptoms? How does the bacterium regulate its diverse and complex set of virulence genes?

Approaches:Our long-term goal is to identify traits that R. solanacearum needs to cause wilt disease in the unique nutrient-poor and microaerobic environment of the plant xylem. We also study plant responses to infection with R. solanacearum. Because R. solanacearum is a plant pathogen, not merely a laboratory model organism, we do our experiments in planta under biologically realistic conditions and we work with economically important natural hosts such as tomato, banana, potato, tobacco, and geranium. Working with collaborators, we also study this disease in the field.

Below are a few areas of active research:

Metabolic multitasking: How Ralstonia solanacearum uses inorganic nitrogen for plant pathogenesis    R. solanacearumis very successful in the vascular tissue of its plant hosts even though this habitat contains few nutrients and little oxygen. This project’s central hypothesis is that R. solanacearum uses inorganic nitrogen, one of the few abundant nutrients in plant sap, not just for food but also to generate energy and to sense and manipulate plant defences. We are using genetic and biochemical experiments to identify the specific adaptations that allow this pathogen to use inorganic nitrogen in multiple ways as it causes plant disease. Expected results include a better understanding of how R. solanacearum grows at low oxygen levels and a definition of the role(s) in virulence of nitric oxide, a common biological signal molecule that also has antimicrobial properties. R. solanacearum is a widely distributed pathogen with many hosts, so these results are likely to be relevant to diverse plant-associated microbes. Plant vascular systems are home to many microbes, ranging from destructive pathogens like R. solanacearum to valuable mutualists that can increase plant stress tolerance or growth. This project will generate basic biological knowledge about the biochemical mechanisms used by plant-inhabiting microbes.

Intrastrain competition in R. solanacearum. Humans have distributed R. solanacearum around the world, but different strains rarely occur in the same field and have never been found in the same plant, for unknown reasons. In the stems and rhizospheres of whole tomato plants, a North American strain (K60) outcompeted both a tropical Asian strain (GMI1000) and a cool temperate Race 3 strain that causes potato brown rot (UW551). Strain K60 also inhibited growth of other R. solanacearum strains in culture. The inhibitory activity was secreted, proteinaceous, and had no activity against tested non-R. solanacearum bacteria. We hypothesize that the inhibition is caused by bacteriocins, antimicrobial proteins active against closely related strains that may mediate competition among R. solanacearum strains in the field. Mutagenesis indicates the bacteriocin activity is encoded by diverse Rhs domain proteins, which are cell surface or secreted toxins. Characterization of these genes is underway to better define the role of bacteriocins in competitive fitness and exclusion of this major pathogen.

exDNases: novel bacterial wilt virulence factors. R. solanacearumhas two extracellular nucleases, and transcriptomic analyses show these are expressed during tomato pathogenesis.  Microscopic studies revealed that in response to R. solanacearum, tomato and pea root border cells form DNA-containing extracellular traps that immobilize the pathogen. Analysis of single and double R. solanacearum mutants lacking the putative extracellular DNase genes confirmed that both genes encode functional secreted deoxyribonucleases, named NucA and NucB. A nucA/nucB double mutant was less virulent than wild type on tomato plants following a naturalistic soil-soak inoculation and, surprisingly, also after direct inoculation into stems. This indicates that bacterial DNases contribute to virulence after root invasion.  This mutant also had reduced ability to inhibit growth of pea and tomato roots. In addition, the nucA/nucB mutant no longer grew on DNA as sole carbon source, suggesting that extracellular DNases not only degrade plant extracellular traps, but may also serve a nutritional purpose. 

Finally, the nucA/nucB mutant formed abnormal non-spreading colonies and produce abnormally thick biofilms, which contain EPS and DNA. If R. solanacearum needs DNases to form normal biofilms on xylem vessel walls this may explain why NucA and NucB contribute to virulence after root entry. We are working to better understand how extracellular DNases contribute to bacterial wilt virulence.

R. solanacearum, geraniums, and bioterrorism. A subgroup of R. solanacearum, Race 3 Biovar 2 (R3bv2), is listed as a potential bioterrorism agent (Select Agent) in the United States. R3bv2, which causes serious losses on potatoes in the highland tropics, is now subject to the strictest quanantine and biosecurity regulations. Although R3bv2 is not established in North America, it has been introduced several times on imported geranium cuttings. Recent introductions of this pathogen on geranium cuttings have cost the ornamental industry millions of dollars. Our lab studies the interaction between R3bv2 and geranium plants to help develop regulatory policy that corresponds to the true biological risk posed by this pathogen.

 

The Allen Lab, June 2015:
Front row: Alejandra Huerta, Devanshi Khokhani, Bianna Fochs, Caitilyn Allen.
Back row: Leonard Kiirika, Jordan Weibel, Beth Dalsing, Matthew Pereyra, April MacIntyre, Alicia Truchon, Tiffany Lowe, Aisha Inuwa, Frederique Van Gijsegem, and Tuan Minh Tran.

  • PP123 - Plants, Parasites, & People
  • PP505 - Plant-Microbe Interactions
  • PP622 - Plant-Bacterial Interactions
  • PP875 - Tropical Plant Pathology

 

CAITILYN ALLEN Publications list (past 15 years)

 

1.         Tancos, M., T. Lowe-Power, T. M. Tran, C. Allen, C. Smart 201x. Plant-like bacterial expansins play contrasting roles in two tomato vascular pathogens. In review.

2.         Li, B., T. Lowe-Power, S. Kurihara, S. Gonzales, J. Naidoo, J. MacMillan, C. Allen, and A. Michael. 2016. Functional identification of putrescine C- and N-hydroxylases.  ACS Chemical Biology doi:10.1021/acschembio.6b00629

3.         Tran, T. M., A. M. MacIntyre, D. Khokhani, M. C. Hawes, and C. Allen 2016. Extracellular DNases of Ralstonia solanacearum modulate biofilms and facilitate bacterial wilt virulence. Environmental Microbiology 18: doi: 10.1111/1462-2920.13446

4.         Tran, T.M., A. M. MacIntyre, M. C. Hawes, and C. Allen 2016. Escaping underground nets: extracellular DNases degrade plant extracellular traps and contribute to virulence of the plant pathogenic bacterium Ralstonia solanacearum. PLoS Pathogens12: e1005686 (Featured Article and cover image)

5.         Lowe-Power, T. M., J. M Jacobs, F. Ailloud, B. Fochs, P. Prior, and C. Allen. 2016. Degradation of the plant defense signal salicylic acid protects Ralstonia solanacearum from toxicity and enhances virulence on tobacco. mBio 7: e00656-16

6.         Weibel, J., T. M. Tran, A. M. Bocsanczy, M. Daughtrey, D. J.Norman, L. Mejia, and C. Allen 2016. A Ralstonia solanacearum strain from Guatemala infects diverse flower crops, including new asymptomatic hosts Vinca and Sutera, and causes symptoms in geranium, mandevilla vine, and new host African daisy (Osteospermum ecklonis). Plant Health Progress 17:114-21

7.         Hawes, M., C. Allen, B. G. Turgeon, G. Curlango-Rivera, T. M. Tran, and X. Zhongguo 2016. Root border cells and their role in plant defense. Annual Review of Phytopathology, 54: 143-61

8.         Ailloud, F, TM Lowe, S. Cruveiller, I. Robene, C. Allen, and P. Prior. 2016. In planta comparative transcriptomics of host-adapted strains of Ralstonia solanacearum. Peer J 4:e1549   

9.         Prior, P., F. Ailloud, B. L. Dalsing, B. Remenant, B. Sanchez, and C. Allen. 2016. Genomic and proteomic evidence for the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics 17: 90   

10.     Tran, T. M., J. M. Jacobs, A. I. Huerta, A. S. Milling, J. A. Weibel and C. Allen. 2016.   Sensitive, secure detection of race 3 biovar 2 and native U.S. strains of Ralstonia solanacearumPlant Disease 100: 630-639 (Editor’s Pick)

11.     Meng, F. L. Babujee, J. M. Jacobs, and C. Allen 2015. Comparative transcriptome analysis reveals cool virulence factors ofRalstonia solanacearum race 3 biovar 2. PLoS ONE10: e0139090

12.     Huerta, A. I., A. S. Milling, and C. Allen. 2015. Tropical strains of Ralstonia solanacearum outcompete Race 3 biovar 2 strains at lowland tropical temperatures. Applied and Environmental Microbiology 81: 3542-3551 (cover image)

13.     Ailloud, F., T. Lowe, G. Cellier, D. Roche, C. Allen, and P. Prior. 2015. Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity. BMC Genomics 16: 270

14.     Dalsing, B. L., A. N. Truchon, E. T. Gonzalez, A. S. Milling, and C. Allen. 2015. Inorganic nitrogen reduction and detoxification are necessary for full Ralstonia solanacearum virulence on tomato. mBio 6(2):e02471-14

15.     Lowe, T., F. Ailloud, and C. Allen 2015. Hydroxycinnamic acid degradation, a broadly conserved trait, protects Ralstonia solanacearum from chemical plant defenses and contributes to root colonization and virulence. Molecular Plant-Microbe Interactions: 28:286-297 (cover image)

16.     Allen, C. 2015. Threats from plant pathogens. Chapter 8 in: Climate Change and Public Health (J. A. Patz and B. A. Levy, editors). Oxford University Press USA, New York. (Environmental Health Book of the Year from The American Journal of Nursing; Honorable Mention from Atmospheric Science Librarians International)

17.     Jacobs, J. M., and C. Allen. 2015. Virulence mechanisms of plant pathogenic Ralstonia  species. p. 365-380 in: Virulence Mechanisms of Plant Pathogenic Bacteria, (N. Wang, J.B. Jones, and G. Sundin, eds) APS Press, St. Paul

18.     Spraker, J. E., K. Jewell, L. Roze, J. Scherf, D. Ndagano, R. Beaudry, J. Linz, C. Allen, and N. P. Keller 2014. A volatile relationship : Profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia solanacearum and Aspergillus flavus. Journal of Chemical Ecology 40:502-13

19.     Dalsing, B. L., and C. Allen 2014. Nitrate assimilation contributes to Ralstonia solanacearum root attachment, stem colonization, and virulence.  Journal of Bacteriology 196: 949-960

20.     Jacobs, J. M., A. Milling, R. M. Mitra, F. Ailloud, P. Prior, and C. Allen 2013. Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and to overcome salicylic acid-mediated defenses during tomato pathogenesis. mBio 4(6):e00875-13

21.     Jacobs, J. M., and Allen, C. 2013. Disease resistance against a broad-host-range pathogen. Plant Health Progress doi:10.1094/PHP-2013-11XX-01-RS.

22.     Pauly, J., D. Spiteller, J. Linz, J. M. Jacobs,C. Allen,M. Nett, and D. Hoffmeister2013. Ralfuranone thioether production by the plant pathogen Ralstonia solanacearum. ChemBioChem 14:2169-2178

23.     Jacobs, J. M., L. Babujee, F. Meng, A. Milling, and C. Allen. 2012. The in planta transcriptome of Ralstonia solanacearum: Conserved physiological and virulence strategies during bacterial wilt of tomato. mBio 3(4):e00114-12 

24.     Santana, B. G., C. A. Lopes, E. Alvarez, C. C. Barreto, C. Allen, and B. Quirino. 2012. Diversity of Brazilian biovar 2 strains of Ralstonia solanacearum. Journal of General Plant Pathology78 :190-200

25.     Remenant, B., L. Babujee, A. Lajus, C. Médigue, P. Prior, and C. Allen 2012. Sequencing of K60, type strain of the major plant pathogen Ralstonia solanacearum. Journal of Bacteriology 194 :2742-3

26.     Remenant, B., J-C de Cambiaire, G. Cellier, J. M. Jacobs, S. Mangenot, V. Barbe, A. Lajus, David Vallenet, C. Medigue, M. Fegan, C. Allen and P. Prior. 2011. Ralstonia syzygii, the Blood Disease Bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles. PLoS One 6(9): e24356 

27.     Flores-Cruz, Z., and C. Allen. 2011. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearumApplied and Environmental Microbiology 77: 6426-6432

28.     Kubota, R., M. A. Schell, G. D. Peckham, J. Rue, A. M. Alvarez, C. Allen, and D. M. Jenkins. 2011. In silicogenomic subtraction
 guides development of highly accurate, DNA-based diagnostics for
 Ralstonia solanacearum Race 3 biovar 2 and Blood Disease Bacterium. Journal of General Plant Pathology 77:182-193

29.     Meng, F., J. Yao, and C. Allen. 2011. A hypermotile motN mutant of Ralstonia solanacearum is reduced invirulence. Journal of Bacteriology 193:2477-2486

30.     Wackler, B. P. Schneider, J. M. Jacobs, C. Allen, W. Steglich, M. Nett, and D. Hoffmeister. 2011. Ralfuranone biosynthesis in Ralstonia solanacearum suggests functional divergence in the quinone synthetase family of enzymes. Chemistry and Biology 18:354-360

31.     Milling, A., L. Babujee, and C. Allen 2011. Ralstonia solanacearumextracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PloS One6(1): e15853

32.     Colburn-Clifford, J. M., J. M. Scherf, and C. Allen. 2010.Ralstonia solanacearum Dps contributes to oxidative stress tolerance, colonization, and virulence on tomato plants. Applied and Environmental Microbiology76:7392-7399

33.     Scherf, J. M., A. Milling, and C. Allen. 2010. Moderate temperature fluctuations rapidly reduce viability of Ralstonia solanacearum Race 3 biovar 2 in infected geranium, tomato, and potato.  Applied and Environmental Microbiology 76:7061-7067

34.     Remenant, B., B. Coupat-Goutaland, A. Guidot, G. Cellier, E. Wicker, C. Allen, M. Fegan, O. Pruvost, M. Elbaz, A. Calteau, G. Salvignol, D. Mornico, S. Mangenot, V. Barbe, C. Medigue and P. Prior. 2010. Genomes of three diverse tomato pathogens within the Ralstonia solanacearum species complex reveal evolution in action. BMC Genomics 11:379

35.     Colburn-Clifford, J. M., and C. Allen. 2010. A cbb3-type cytochrome c oxidase contributes to Ralstonia solanacearum R3bv2 growth in microaerobic environments and to bacterial wilt disease development in tomato. Molecular Plant-Microbe Interactions 23:1042-1052 (Editor's Pick for the issue)

36.     Li, J.-G., H.-X. Liu, J. Cao, L.-F. Chen, C. Gu, C. Allen, and J-H. Guo. 2010.  PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall. Molecular Plant Pathology 11: 371-381

37.     Chen, Y., W. Z. Zhang, X. Liu,  Z. H, Ma, B. Li, C. Allen, and J.-H. Guo. 2010. A real-time PCR assay for the quantitative detection of Ralstonia solanacearum in the horticultural soil and plant tissues. Journal of Microbiology and Biotechnology 20 :193-201

38.     MacDonald, J., C. Allen, D. Gadoury, W. Jacobi, S. Kelemu, J. Moyer, T. Murray, K. Ong, C. Pearson, J. Sherwood, and A. Vidaver. 2009.  Education in plant pathology: Present status and future challenges. Plant Disease 93:1238-1251

39.     Mejía, L., B.E. Garcia, A.C. Fulladolsa, E.R. Ewert, J.-F. Wang, J.W. Scott, C. Allen, and D.P. Maxwell.  2009.  Evaluation of recombinant inbred lines for resistance to Ralstonia solanacearum in Guatemala and preliminary data on PCR-based tagging of introgressions associated with bacterial wilt-resistant line, Hawaii 7996.  Tomato Genetics Cooperative Report 59:32-41

40.     Schneider,P., J. M. Jacobs, J. Neres, J. C. A. Aldrich,C. Allen,M. Nett, and D. Hoffmeister. 2009. The global virulence regulators VsrAD and PhcA control secondary metabolism in the plant pathogen Ralstonia solanacearum. ChemBioChem 10: 2730-32

41.     Toukam, G. M. S., G. Cellier, E. Wicker, C. Guilbaud, R. Kahane, C. Allen, and P. Prior. 2009. Broad diversity of Ralstonia solanacearum strains in Cameroon.  Plant Disease 93:1123-1130

42.     Allen, C., A. F. Bent, and A. O. Charkowski. 2009. Underexplored niches in research on plant pathogenic bacteria. Plant Physiology 150:1631-37

43.     Flores-Cruz, Z. and C. Allen. 2009. Ralstonia solanacearum encounters an oxidative environment during tomato infection. Molecular Plant-Microbe Interactions: 22:773-782

44.     Milling, A., F. Meng, T. P. Denny, and C. Allen. 2009. Interactions with hosts at cool temperatures, not cold tolerance, explain the unique epidemiology of Ralstonia solanacearum Race 3 biovar 2. Phytopathology 99:1127-1134

45.     Champoiseau, P., J. Jones, and C. Allen. 2009.  Ralstonia solanacearumRace 3 biovar 2 causes tropical losses and temperate anxieties. Plant Health Progress doi:10.1094/PHP-2009-0313-01-RV

46.     Nakaho, K. and C. Allen. 2009. A pectinase-deficient Ralstonia solanacearum strain induces reduced and delayed structural defenses in tomato xylem. Journal of Phytopathology157: 228-34

47.     Hong, J.C., T. Momol, J. Jones, P. Ji, S. Olson, C. Allen, A. Sanchez-Perez, P. Pradhanang, K. Guven. 2008. Detection of Ralstonia solanacearum in irrigation ponds and aquatic weeds associated with ponds in North Florida. Plant Disease 92:1674-82

48.     J. M. Young, C. Allen, T. Coutinho, T.Denny, J. Elphinstone, M. Fegan, M. Gillings, T. R. Gottwald, J. H. Graham, J. D. Janse, M. M. Lopez, C. Morris, N. Parkinson, J. Rodrigues Neto,  M. Scortichini, and Y. Takikawa. 2008. Plant pathogenic bacteria as bioterror weapons: A real threat? Phytopathology 98:1060-1065

49.     Sanchez-Perez, A., L. Mejia, M. Fegan, and C. Allen.  2008.  Diversity and distribution of Ralstonia solanacearum strains in Guatemala and rare occurance of tomato fruit infection. Plant Pathology 57:320-331

50.     Yao, J. and C. Allen. 2007. The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host.Journal of Bacteriology 189:6415-6424

51.     González, E.T. D.G. Brown, J.K. Swanson, and C. Allen. 2007. Using the Ralstonia solanacearum Tat secretome to identify additional bacterial wilt virulence factors.  Applied and Environmental Microbiology 73:3779-3786

52.     Swanson, J. K., L. Montes, L. Mejia and C. Allen. 2007. Detection of latent infections of Ralstonia solanacearum Race 3 biovar 2 in geraniums. Plant Disease 91:828-834

53.     Brown, D.G., J. Swanson, and C. Allen. 2007. Two host-induced Ralstonia solanacearum multidrug efflux pumps, AcrAB and DinF, contribute to bacterial wilt virulence.Applied and Environmental Microbiology 73:2777-2786

54.     Allen, C. 2007. It's a Boy! Gender expectations intrude on the study of sex determination. DNA and Cell Biology 26: 699-705

55.     Ji, P., C. Allen, A. Sanchez-Perez, J. Yao, J G. Elphinstone, J. Jones, and T. Momol. 2007. New diversity and diagnostic challenges associated with Ralstonia solanacearum strains in Florida. Plant Disease 91:195-203

56.     Allen, C. 2007.  Bacteria, bioterrorism, and the geranium ladies of Guatemala. p.169-177 in: Wages of Empire: Neoliberal policies, repression, and women's poverty.  (A. L. Cabezas, E. Reese, and M. Waller, editors)  Paradigm Press, Boulder, Colorado

57.     Yao, J. and C. Allen. 2006.  Chemotaxis is required for virulence and competitive fitness in the bacterial wilt pathogen Ralstonia solanacearumJ. Bacteriology 188:3697-3708

58.     Gabriel, D. W., C. Allen, M. Schell, T. Denny, J. T. Greenberg, Q. Huang, Y.-P. Duan, Z. Flores, J. Clifford, G. Presting, E. T. González, J. Reddy, J. Elphinstone, J. Swanson, J. Yao, V. Mulholand, L. Liu, W. Farmerie,  M. Patnaikuni, B. Balogh, D. J. Norman, A. Alvarez, J. A. Castillo, J. B. Jones, G. S. Saddler, T. Walunas, A. Zhukov, and N. Mikhailova. 2006. Identification of Open Reading Frames unique to Select Agent Ralstonia solanacearum. Molecular Plant-Microbe Interactions 19:69-79

59.     Brown, D., and C. Allen. 2005 Understanding the molecular basis of bacterial wilt disease: a view from the inside out. p. 371-378 in : Allen, C., P. Prior, and A. C. Hayward, eds, Bacterial Wilt : The Disease and the Ralstonia solanacearum species Complex. APS Press, St. Paul

60.     Allen, C., J. Tans-Kersten, and E. Gonzàlez.  2005. Genes involved in early bacterial wilt pathogenesis.  p. 343-350 in : Allen, C., P. Prior, and A. C. Hayward, eds, Bacterial Wilt : The Disease and the Ralstonia solanacearum species Complex. APS Press, St. Paul

 

61.     Swanson, J. J. Yao, J. Tans-Kersten, and C. Allen. 2005. Behavior ofRalstonia solanacearum race 3 biovar 2during latent and active infection of geranium. Phytopathology 95:136-143

62.     Allen, C., P. Prior, and A.C. Hayward. 2005. Bacterial Wilt: The Disease and the Ralstonia solanacearum Species Complex.  APS Press, St. Paul. 508 pages. (APS Press bestseller for 2005)

63.     Brown, D.G., and C. Allen. 2004. Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Molecular Microbiology 53:1641-1660

64.     Pfund, C., J. Tans-Kersten, M. Dunning, C. Allen, and A. Bent. 2004. Flagellin is not a major defense elicitor in Ralstonia solanacearum cells or extracts applied to Arabidopsis thaliana. Molecular Plant-Microbe Interactions 17:696-706

65.     Tans-Kersten, J., D. Brown, and C. Allen. 2004. Swimming motility, a virulence factor of Ralstonia solanacearum, is regulated by FlhDC and by the plant host environment. Molecular Plant-Microbe Interactions. 17:686-695

66.     González, E. T., and C. Allen. 2003. Characterization of a Ralstonia solanacearumoperon required for polygalacturonate degradation and uptake of galacturonic acid. Molecular Plant-Microbe Interactions 16:536-544

67.     Brower, AM, Chris M. Golde, and C. Allen. 2003. Residential learning communities positively affect college binge drinking, NASPA Journal 40: No. 3, Article 9. (1518full-text downloads through 1/13

68.     Williamson, L., C. Allen, K. Nakaho, and B. Hudelson. 2002. Ralstonia solanacearum race 3, biovar 2 strains isolated from geranium are pathogenic on potato. Plant Disease 86 :987-991

69.     Leong, S.A., C. Allen, E. Tripplett, editors. 2002. Biology of Plant-Microbe Interactions, Vol. 3. APS Press, St. Paul, 360 pages

70.     Allen, C. Teaching courses on molecular plant-microbe interactions. 2002 In: S. Leong, E. Triplett, and C. Allen, editors. 2002. Biology of Plant-Microbe Interactions, Vol. 3. APS Press, St. Paul

71.     Tans-Kersten, J., H. Huang, and C. Allen 2001. Ralstonia solanacearum needs motility for invasive virulence on tomato. Journal of  Bacteriology 183:3597-3605

72.     Allen, C.  2001. Shades of Gray: Changing the content of science courses to include and encourage the underrepresented. p.68-75 In: Flickering Clusters: Women, Science, and Collaborative Transformations (C. Ney, J. Ross, and L. Stempel, editors). University of Wisconsin Press, Madison

 

 

 

 

 

 

 

 

 

 

 

 

 

Allen, C., P. Prior, and A.C. Hayward. 2005. Bacterial Wilt: The Disease and the Ralstonia solanacearum Species ComplexAPS Press, St. Paul. 508 pages. (APS Press bestseller for 2005)

Leong, S.A., C. Allen, E. Tripplett, editors. 2002. Biology of Plant-Microbe Interactions, Vol. 3. APS Press, St. Paul, 360 pages.

Prior, P., C. Allen, and J. Elphinstone, editors. 1998. Bacterial Wilt Disease: Molecular and Ecological Aspects. Springer Verlag, Berlin.